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The novel oxonitridoaluminosilicates (sialons) Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) were obtained by the

reaction of the respective lanthanide metals with Si(NH)2, SrCO3, and AlN using a radiofrequency furnace at

temperatures between 1550±1650 ³C. The crystal structures of the isotypic sialons were determined by single-

crystal X-ray investigations (Sr3Ce10Si18Al12O18N36: I4Å3m, Z~2, a~1338.2(2) pm, R1~0.0333;

Sr3Pr10Si18Al12O18N36: a~1334.54(6) pm, R1~0.0296; Sr3Nd10Si18Al12O18N36: a~1332.85(6) pm, R1~0.0271)

and in the case of Sr3Pr10Si18Al12O18N36 with powder neutron diffraction as well. The three-dimensional sialon

network is built up by SiON3, SiN4, and AlON3 tetrahedra. Besides the bridging O and N atoms of the sialon

network there are isolated O22 which are tetrahedrally coordinated by Sr and Ln. The crystallographic

differentiation of Si/Al and O/N seemed to be possible by a careful evaluation of the single-crystal X-ray

diffraction data combined with lattice energy calculations using the MAPLE concept (Madelung Part of Lattice

Energy). In the case of Sr3Pr10Si18Al12O18N36 the differentiation of O and N and the proposed ordering was

completely con®rmed by powder neutron diffraction.

1 Introduction

Oxonitridoaluminosilicates (sialons) are excellent materials due
to their high mechanical hardness and strength, and their
exceptional thermal and chemical stability.1±3 The ®rst
members of this class of compound have been synthesised by
the reaction of Si3N4 and Al2O3.4±6 The crystallographic
structures of these sialons derive from those of a- and b-Si3N4.
Therefore, these sialons have been called a- or b-sialons,
respectively. In the meantime sialons have been synthesised
which are structurally related to oxygen containing compounds
like melilite (M-phase), apatite (H-Phase), or wollastonite (K-
phase).7 Concerning their solid-state chemistry most of these
compounds have been only insuf®ciently characterised.
Detailed structural information was missing as single-crystal
data only for one compound, the so called Nd-U-phase, has
been obtained.8±13

Our synthetic approach using a radiofrequency (rf) furnace
and silicon diimide and metals as starting compounds led to a
considerable number of novel nitridosilicates.14,15 This syn-
thetic strategy has now been successfully transferred to the
synthesis of new oxonitridoaluminosilicates (sialons) and
oxonitridosilicates (sions), namely SrSiAl2O3N2,16 SrErSi-
Al3O3N4,17 Sm2Si3O3N4 and Ln2Si2.5Al0.5O3.5N3.5 (Ln~Ce,
Pr, Nd, Sm, Gd),18 Nd3Si5AlON10,19 and most recently
Ce16Si15O6N32.20,21

A speci®c problem during the structural characterisation of
the sialons and sions arises from the question, whether the Si/Al
and O/N atoms, respectively, are crystallographically ordered.
And if they are ordered, how this ordering can be exactly
proved. Si4z/Al3z and O22/N32, respectively, have very
similar atomic form factors. Therefore X-ray diffraction

methods are not reliable for their differentiation and neutron
diffraction experiments have to be performed.

In this paper we present the new sialons Sr3Ln10Si18-
Al12O18N36 (Ln~Ce, Pr, Nd). These compounds are the ®rst
representatives of a new structure type. The ordering of the
Si/Al and O/N atoms, respectively, was determined by X-ray
single-crystal investigations, lattice energy calculations using
the MAPLE concept and in the case of Sr3Pr10Si18Al12O18N36

by neutron powder diffraction.

2 Experimental procedure

The synthetic procedure using a radiofrequency furnace for the
high-temperature syntheses has been developed primarily in
our laboratory for the preparation of nitridosilicates. We now
have adopted this method for the synthesis of several new
sialons and sions. Details of the experimental setup are given in
ref. 17. As starting materials for the preparation of
Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) we used silicon
diimide (Si(NH)2), AlN, SrCO3 (Merck, p.a.), and the
powdered metals Ce, Pr, or Nd (ABCR, purity 99.9%),
respectively.

2.1 Synthesis of silicon diimide (Si(NH)2)

Using Si(NH)2 instead of the relatively unreactive Si3N4 as the
starting material proved to be advantageous for the synthesis of
the nitridosilicates and this also holds for the sialons.14,15

Si(NH)2 was obtained by ammonolysis of SiCl4 in CH2Cl2
followed by a thermal treatment at 600 ³C under an atmosphere
of pure NH3 [eqn. (1)].
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SiCl4z6 NH3 DCCA
1: CH2Cl2

2: 600 0C
Si(NH)2z4 NH4Cl (1)

A detailed description of the synthesis of Si(NH)2 is given in
ref. 22. Si(NH)2 was yielded as an X-ray amorphous and
relatively unde®ned but reactive product which is converted to
amorphous Si3N4 at temperatures above 900 ³C. It is an
important precursor for the technical production of Si3N4

ceramics.22

2.2 Synthesis of aluminium nitride

Single-phase and crystalline AlN was obtained by the reaction
of Al (purityw99%, Fluka) in a continuous stream of nitrogen
(purity 5.0, Linde). Five reaction cycles of 2 h each at 900 ³C
(heating rate 1 ³C min21, cooling rate 20 ³C min21) with
subsequent grinding of the sintered product were performed.
IR-spectroscopic investigations excluded the presence of N±H
groups in the product. Furthermore the purity was checked by
X-ray powder diffraction.

2.3 Synthesis of the sialons Sr3Ln10Si18Al12O18N36 (Ln~Ce,
Pr, Nd)

The sialons Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) were
obtained by high-temperature reaction of SrCO3, Si(NH)2,
AlN, and the respective powdered lanthanide metals Ce, Pr,
and Nd using an rf furnace. Under an atmosphere of pure
argon the respective starting compounds were placed in a
tungsten crucible which was positioned in the centre of the
induction coil of an rf furnace. The reaction was then
performed under a pure atmosphere of nitrogen (puri®ed by
silica gel, potassium hydroxide, molecular sieve, P4O10, and a
BTS catalyst). The compositions of the starting compounds
and the respective reaction conditions are summarised in
Tables 1 and 2.

The sialons Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) were
yielded as coarsely crystalline materials. In the case of the Pr
compound the average yield was nearly 75%. For the Ce and
the Nd compounds the yields range between 30±40%. As by-
products the individually coloured N-containing melilites18

were obtained. Furthermore X-ray amorphous strontium-rich
sialons were observed. The title compounds can easily be
separated from their by-products due to their differing colour
and the crystal habit (Fig. 1). Each of the sialons Sr3Ln10Si18-
Al12O18N36 (Ln~Ce, Pr, Nd) shows a speci®c colour: Ce:
orange, Pr: dark green, Nd: blue violet. The materials are very
hard (see hardness investigations later), scratching agate while
grinding.

The compositions of the products were analysed by energy-
dispersive X-ray microanalysis (JEOL, JSM 6400, Institute of
Materials Research, University of Bayreuth, Germany). The
analyses revealed the molar ratios of Sr, Ln, Si, Al, O, and N
(Ln~Ce, Pr, Nd) as theoretically expected. Additionally, the
amount of nitrogen was checked by photometric determination
after digestion of the compounds by microwave treatment
using a matrix of conc. H2SO4, aqueous conc. HF, and aqueous
conc. H2O2 in a volume proportion of 5 : 1 : 1. The absence of
hydrogen (N±H) in the reaction products was proved by IR
spectroscopy. The title compounds exhibit great chemical and

thermal stability. They are stable up to more than 1700 ³C and
they are resistant against hot acid and alkaline solutions.

3 Crystal structure analysis and lattice energy
calculations

X-Ray diffraction data of the title compounds were collected
on a four-circle diffractometer (Siemens P4). According to the
observed extinction conditions of the cubic lattice (only
re¯ections hkl with hzkzl~2n and h00 with h~2n) the
space groups I23, I213, Im3Å, I432, I4Å3m, and Im3Åm were
considered. The structure solution and re®nement was only
possible choosing space group I4Å3m (no. 217). The crystal
structures of Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) were
solved by direct methods using SHELXTL23 and re®ned with
anisotropic displacement parameters for all atoms. Further-
more all re¯ections detected by X-ray powder diffraction
(Siemens D5000) of single-phase Sr3Ln10Si18Al12O18N36

(Ln~Ce, Pr, Nd) have been indexed and their observed
intensities are in good agreement with the calculated diffraction
patterns based on the single-crystal data. The relevant crystal-
lographic data and further details of the X-ray data collection
are summarised in Tables 3±5. Table 6 shows the positional
and displacement parameters for all atoms. In Table 7 selected
interatomic distances and angles are listed.

Due to their identical electronic con®guration and their very
similar atomic form factors the unequivocal differentiation of
N32/O22 and Al3z/Si4z, respectively, by X-ray diffraction
methods is not reliable. We therefore re®ned an approach
leading to the differentiation of N/O and Al/Si, respectively, by
a careful examination of the single-crystal X-ray diffraction
data combined with lattice energy calculations using the
MAPLE concept (MAPLE~Madelung Part of Lattice
Energy).24±26

On the other hand neutron diffraction is an excellent tool
for the differentiation of O and N because their scattering
lengths differ signi®cantly (b(N)~9.36610215 m, b(O)~
5.803610215 m).27 However, it is much more dif®cult to
discriminate between Al3z and Si4z due to their more similar
scattering lengths (b(Al)~3.449610215 m, b(Si)~4.1496
10215 m).27 In the case of Sr3Pr10Si18Al12O18N36 we were
able to synthesise a suf®cient amount to perform neutron
powder diffraction. For the diffraction experiments the time-
of-¯ight method (TOF) was used. About 250 mg of the pure
sample were enclosed into a vanadium cylinder. The investiga-
tion was performed both at the POLARIS instrument of the
ISIS/Rutherford Appleton Laboratory, Chilton, UK, and the
D2B beamline at the Institute Laue Langevin (ILL), Grenoble,
France, which permits the measurement of relatively small
samples due to high ¯ux. The Rietveld re®nement was
performed with the program GSAS28 using the single-crystal
X-ray data of Sr3Pr10Si18Al12O18N36 as a starting model. The
results of the Rietveld re®nement of the neutron diffraction
data are shown in Fig. 2, the details of the ®nal re®nement are
listed in Table 8. Both structure re®nements gave similar
atomic coordinates and displacement parameters. Initially
Si/Al and O/N were located on the same crystallographic
positions, respectively, and their occupation factors were
dependently re®ned. An unequivocal discrimination between

Table 1 Composition of reaction batches for the synthesis of Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd)

Ln Si(NH)2 AlN SrCO3

Sr3Ce10Si18Al12O18N36 Ce; 170.8 mg 78.6 mg 55.6 mg 91.2 mg
(1.22 mmol) (0.89 mmol) (1.36 mmol) (0.62 mmol)

Sr3Pr10Si18Al12O18N36 Pr; 120.1 mg 85.0 mg 70.1 mg 120.3 mg
(0.85 mmol) (1.46 mmol) (1.71 mmol) (0.82 mmol)

Sr3Nd10Si18Al12O18N36 Nd; 120.0 mg 75.4 mg 60.1 mg 106.6 mg
(0.83 mmol) (1.30 mmol) (1.46 mmol) (0.72 mmol)
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O and N was possible and the results match exactly the O/N
distribution obtained by the single-crystal X-ray structure
determination and the MAPLE calculations. According to the
re®ned occupancy factors (Table 8) which are unity within
twice the standard deviations full crystallographic ordering of
O and N sites was proved. Due to their similar scattering
lengths of Al3z and Si4z (see above) the free re®nement of
their occupancy factors was not possible on the basis of the
obtained neutron diffraction data. However an iterative
MAPLE calculation on the basis of the O/N sites determined
by neutron diffraction yielded strong evidence for the crystal-
lographic ordering of Al and Si (Table 9).

For the exact differentiation of Si/Al and O/N, respectively,
we performed lattice energy calculations using the MAPLE
concept. As a result of these calculations each atom in a crystal
structure has a particular range of partial MAPLE values

(Si4z: 9100±10200 kJ mol21, Al3z: 5500±6000 kJ mol21, O22:
1870±3300 kJ mol21, N32: 5000±6200 kJ mol21) assigned. The
ranges are characteristic for the concerned elements. Atoms on
a speci®c site which have been assigned to a wrong atom type
(e.g. Si instead of Al or O instead of N) normally exhibit a
partial MAPLE value, which signi®cantly differs from the
characteristic range. These effects indicate a wrong occupation
of the concerned crystallographic site (Table 9).

4 Results and discussion of the structure re®nements

The sialons Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) are the
®rst representatives of a new structure type. In the solid the
structure consists of a three-dimensional network of corner
sharing SiON3, AlON3, and SiN4 tetrahedra (all Q4 type).
According to Pauling's rules29 in sions and sialons nitrogen
normally prefers sites in which the N atoms in comparison with
the O atoms are directly bound to the same or a higher number
of neighbouring Si or Al atoms.17 Therefore, the N atoms in
Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) are connecting two
(N[2]) or three tetrahedral centres (N[3]) while the oxygen atoms
are only connecting two (O[2]) of them or they are isolated
(O[0]). According to the formula Sr3Ln10[Si18Al12O12N36]O6 the

Table 2 Reaction steps with ®nal temperatures [³C] and heating/cooling rates [³C min21] for the high-temperature syntheses of Sr3Ln10Si18-
Al12O18N36 (Ln~Ce, Pr, Nd)

Reaction step

Ln~Ce Ln~Pr Ln~Nd

T/³C Rate/³C min21 T/³C Rate/³C min21 T/³C Rate/³C min21

1 1200 20 1200 20 1200 20
2 1550 5.8 1650 7.5 1650 7.5
3 constant 30 min constant 30 min constant 30 min
4 900 20.2 1400 20.3 900 20.3
5 23 2100 23 2100 23 2100

Fig. 1 Single crystal of Sr3Nd10Si18Al12O18N36 (diameter about
120 mm); SEM photograph.

Fig. 2 Observed (crosses) and calculated (line) TOF neutron powder
diffraction pattern as well as the difference pro®le of the Rietveld
re®nement. The lower row of vertical lines indicates possible peak
positions of Sr3Pr10Si18Al12O18N36 (upper row: vanadium of the
sample container; middle row: AlN impurities).

Fig. 3 Double three-rings of SiON3 (black) and AlON3 tetrahedra
(grey) are the characteristic building blocks of the
3
`[(Si

�4�
18Al

�4�
12O

�2�
12N

�2�
12N

�3�
24)] network in Sr3Ln10Si18Al12O18N36 (Ln ~ Ce,

Pr, Nd).
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title compounds may be described as strontium lanthanoide
oxonitridoaluminosilicate oxides.

The mean bond lengths from the tetrahedral centres T
(T~Si, Al) show a signi®cant differentiation T±NwT±O and
Si±N[3]wSi±N[2] (Si±N[2]: 170.2(8)±172.4(4) pm; Si±N[3]:
173.9(6)±176.5(4) pm; Al±N[3]: 177.8(6)±179.5(5) pm; Si±O[2]:
166.1(6)±168.2(8) pm; Al±O[2]: 170.5(4)±171.1(6) pm). The
bond angles at the N[2] atoms are in the range 111.6(4)±
112.2(5)³, for the O[2] atoms in the range 161.8(3)±162.2(5)³.
The sums of the bond angles at the N[3] atoms amount to 356±
358³. The molar ratio T : X (T~Si, Al; X~O, N) for the Si±Al±

O±N network of Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd)
amounts to 0.63. Accordingly these sialons may be classi®ed as
highly condensed (i.e. they exhibit a degree of condensation
T : Xw0.5, which is the maximum value of pure oxosilicates).

Typical of the crystal structure are double three-rings of
three SiON3 and three AlON3 tetrahedra. Within these units
each SiON3 is connected to a AlON3 tetrahedron through an O
atom. Thus within the double three-ring the bridges Si±N±Si,
Al±N±Al, and Al±O±Si occur (Fig. 3). The Si3N3 and Al3N3

rings of these units exhibit the chair conformation, the resulting
four-rings Al2Si2N2O2 the saddle conformation. Furthermore,

Table 3 Crystallographic data of Sr3Ce10Si18Al12O18N36 (e.s.d.s in parentheses)

Crystal data
Sr3Ce10Si18Al12O18N36 F(000)~2996
M~3285.8 g mol21 Dc~4.554 g cm23

cubic Mo-Ka radiation (l~71.073 pm)
space group I4Å3m (No. 217) m~13.372 mm21

a~1338.2(2) pm T~296(2) K
V~2396.4(7)6106 pm3 0.1060.1260.15 mm3

Z~2 orange

Data collection
Siemens P4 diffractometer measured octants: h k l and hÅ kÅ lÅ with
v-scans h~218A18
Absorption correction: Y-scans k~218A18
Tmin~0.1798; Tmax~0.3177 l~218A18
Rint~0.0721 688 independent re¯ections
Hmax~30³ 688 observed re¯ections (Fo

2¢0s(Fo
2))

Re®nement
re®nement on F2 program used to re®ne structure: SHELXL-9323

R1~0.0333 w21~s2Fo
2z(xP)2zyP; P~(Fo

2z2Fc
2)/3

wR2~0.0740 weighting (x/y) 0.0414/19.9850
GOF~1.116 extinction coef®cient: 0.0001(1)
3875 measured re¯ections Flack parameter: 0.01(3)
57 parameters min/max resid. electron dens.: 20.873/2.488 e AÊ 23

Table 4 Crystallographic data of Sr3Pr10Si18Al12O18N36 (e.s.d.s in parentheses)

Crystal data
Sr3Pr10Si18Al12O18N36 F(000)~3016
M~3293.70 g mol21 D~4.602 g cm23

cubic Mo-Ka radiation (l~71.073 pm)
space group I4Å3m (No. 217) m~14.155 mm21

a~1334.54(6) pm T~293(2) K
V~2376.8(2)6106 pm3 0.1460.1660.21 mm3

Z~2 dark green

Data collection
Siemens P4 diffractometer measured octants: h k l and hÅ kÅ lÅ with
v-scans h~224A24
absorption correction: Y-scans k~224A24
Tmin~0.0210; Tmax~0.0711 l~224A24
Rint~0.0561 1393 independent re¯ections
Hmax~40³ 1393 observed re¯ections (Fo

2¢0s(Fo
2))

Re®nement
re®nement on F2 program used to re®ne structure: SHELXL-9323

R1~0.0296 w21~s2Fo
2z(xP)2zyP; P~(Fo

2z2Fc
2)/3

wR2~0.0645 weighting (x/y) 0.0331/1.0807
GOF~1.093 extinction coef®cient: 0.00063(9)
8052 measured re¯ections Flack parameter: 0.01(2)
57 parameters min/max resid. electron dens.: 20.844/2.770 e AÊ 23

Neutron Powder Diffraction
TOF powder diffractometer: POLARIS/ISIS
2h~145³
a~1335.63(1) pm x2: 4.47
T~298 K RP~0.030
range [d-spacing]: 0.48±3.09 AÊ wRP~0.017
no. of data points: 3196 RF~0.043
no. of observed re¯ections: 1092
re®ned parameters:

32 structure parameters
16 pro®le parameters
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the double three-rings are connected via SiN4 tetrahedra
forming a three dimensional network 3

`[(Si
�4�
18Al

�4�
12O

�2�
12N

�2�
12N

�3�
24)]

(Fig. 4).
Among the O[2], N[2], and N[3] atoms, which are bridging two

or three tetrahedral centres there are (O[0])22 ions which are not
directly bound to Si or Al. These O(2) ions are tetrahedrally
coordinated by four metal cations. A free re®nement of the
respective site occupation factors revealed that the respective

metal positions are statistically occupied by Ln3z and Sr2z

with a molar ratio 5 : 1. The exact site occupation factors gave a
ratio of 0.415(15) : 0.085(15), which is very similar to the ratio
of 0.417 : 0.083 calculated from the idealised stoichiometric
formulae. In spite of this accordance a certain phase width
cannot be excluded. Charge compensation by variation not
only of the O/N ratio but also of the Al/Si ratio would be
possible. However, in accordance with the powder neutron

Table 5 Crystallographic data of Sr3Nd10Si18Al12O18N36 (e.s.d.s in parentheses)

Crystal data
Sr3Nd10Si18Al12O18N36 F(000)~3036
M~3327.00 g mol21 D~4.666 g cm23

cubic Mo-Ka radiation (l~71.073 pm)
space group I4Å3m (No. 217) m~14.885 mm21

a~1332.85(6) pm T~293(2) K
V~2367.8(2)6106 pm3 0.1060.1260.13 mm3

Z~2 blue violet

Data collection
Siemens P4 diffractometer measured octants: h k l and hÅ kÅ lÅ with
v-scans h~218A18
absorption correction: Y-scans k~218A18
Tmin~0.0216; Tmax~0.0534 l~218A18
Rint~0.0759 680 independent re¯ections
Hmax~30³ 680 observed re¯ections (Fo

2¢0s(Fo
2))

Re®nement
re®nement on F2 program used to re®ne structure: SHELXL-9323

R1~0.0271 w21~s2Fo
2z(xP)2zyP; P~(Fo

2z2Fc
2)/3

wR2~0.0501 weighting (x/y) 0.0215/8.7902
GOF~1.117 extinction coef®cient: 0.00056(8)
3879 measured re¯ections Flack parameter: 0.00(2)
57 parameters min/max resid. electron dens.: 20.546/1.797 e AÊ 23

Table 6 Atomic coordinates and thermal displacement parameters for Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) (e.s.d.s in parentheses)

Ln Atom
Wyckoff
symbol SOF x y z U11 U22 U33 U23 U13 U12 Ueq

Ce Ce(1) 24g 0.415(15) 0.3706(1) x 0.0496(3) 0.0148(5) U11 0.0099(6) 0.0001(3) U23 20.0048(6) 0.0132(3)
Sr(1) 24g 0.085(15) 0.3706(1) x 0.059(2) 0.044(10) U11 0.012(7) 20.001(3) U23 20.023(9) 0.034(8)
Sr(2) 2a 0 0 0 0.22(1) U11 U11 0 0 0 0.22(1)
Si(1) 24g 0.1502(1) x 0.3100(2) 0.0100(6) U11 0.0097(9) 20.0004(5) U23 0.0006(7) 0.0099(4)
Si(2) 12e 0.3000(3) 0 0 0.010(1) 0.0081(8) U22 20.001(1) 0 0 0.0088(6)
Al(1) 24g 0.2054(1) x 0.9546(2) 0.0066(6) U11 0.007(1) 0.0000(6) U23 20.0011(8) 0.0068(5)
O(1) 24g 0.2138(4) x 0.3978(6) 0.034(3) U11 0.020(3) 0.000(2) U23 20.012(3) 0.029(2)
O(2) 12d J � 0 0.013(4) 0.025(3) U22 0 0 0 0.021(2)
N(1) 24g 0.0720(4) x 0.3762(6) 0.014(2) U11 0.012(3) 0.001(2) U23 20.005(2) 0.014(1)
N(2) 24g 0.2324(4) x 0.0823(5) 0.013(2) U11 0.010(3) 0.001(2) U23 0.005(3) 0.012(1)
N(3) 24g 0.9228(5) 2xz1 0.2287(8) 0.017(2) U11 0.033(5) 0.013(3) 2U23 20.002(3) 0.022(2)

Pr Pr(1) 24g 0.415(10) 0.37033(4) x 0.04848(8) 0.0233(1) U11 0.0157(3) 20.0001(1) U23 20.0071(2) 0.02076(9)
Sr(1) 24g 0.085(15) 0.3709(5) x 0.0625(7) 0.061(4) U11 0.012(2) 0.001(1) U23 20.039(4) 0.044(3)
Sr(2) 2a 0 0 0 0.156(4) U11 U11 0 0 0 0.156(4)
Si(1) 24g 0.15021(6) x 0.31014(9) 0.0154(3) U11 0.0154(4) 0.0001(2) U23 20.0004(3) 0.0154(2)
Si(2) 12e 0.3002(1) 0 0 0.0149(6) 0.0148(4) U22 20.0007(5) 0 0 0.0148(3)
Al(1) 24g 0.20544(6) x 0.95438(9) 0.0123(3) U11 0.0119(4) 20.0002(2) U23 0.0002(3) 0.0122(2)
O(1) 24g 0.2135(2) x 0.3979(3) 0.041(2) U11 0.023(2) 20.0002(9) U23 20.018(2) 0.035(1)
O(2) 12d J � 0 0.026(2) 0.031(2) U22 0 0 0 0.029(1)
N(1) 24g 0.0720(2) x 0.3770(3) 0.0207(9) U11 0.018(1) 20.0006(8) U23 20.006(1) 0.0197(6)
N(2) 24g 0.2322(2) x 0.0823(3) 0.0200(9) U11 0.015(1) 0.0014(8) U23 0.003(1) 0.0184(6)
N(3) 24g 0.9225(2) 2xz1 0.2288(4) 0.021(1) U11 0.033(2) 0.010(1) 2U23 20.003(1) 0.0251(8)

Nd Nd(1) 24g 0.415(15) 0.37036(7) x 0.0475(2) 0.0254(3) U11 0.0149(6) 0.0001(2) U23 20.0066(3) 0.0219(2)
Sr(1) 24g 0.085(15) 0.3706(6) x 0.063(1) 0.060(6) U11 0.013(5) 0.001(2) U23 20.058(5) 0.045(5)
Sr(2) 2a 0 0 0 0.150(4) U11 U11 0 0 0 0.150(4)
Si(1) 24g 0.15038(9) x 0.3106(1) 0.0150(5) U11 0.0169(7) 0.0004(4) U23 20.0012(6) 0.0156(3)
Si(2) 12e 0.3008(2) 0 0 0.013(1) 0.0159(7) U22 20.0011(9) 0 0 0.0150(5)
Al(1) 24g 0.2054(1) x 0.9548(2) 0.0120(5) U11 0.0112(8) 20.0001(5) U23 0.0003(6) 0.0117(3)
O(1) 24g 0.2132(3) x 0.3980(5) 0.048(3) U11 0.028(3) 20.002(2) U23 20.028(3) 0.041(2)
O(2) 12d J � 0 0.032(4) 0.031(3) U22 0 0 0 0.032(2)
N(1) 24g 0.0720(3) x 0.3779(3) 0.022(2) U11 0.019(3) 20.002(2) U23 20.004(2) 0.021(1)
N(2) 24g 0.2327(3) x 0.0825(4) 0.019(2) U11 0.016(2) 0.005(2) U23 0.003(2) 0.018(1)
N(3) 24g 0.9229(4) 2xz1 0.2292(6) 0.021(2) U11 0.037(4) 0.012(2) 2U23 20.005(2) 0.026(1)

nThe anisotropic temperature factor is given as exp[22p2(U11h2a*2z...z2U13hla*c*)]; SOF: site occupation factor.
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diffraction re®nement of Sr3Pr10Si18Al12O18N36 the deviation
from the ideal formula should be small. Six of the tetrahedra
O(Ln3.33Sr0.67) (Ln~Ce, Pr, Nd) are sharing common corners
forming rings (Fig. 5). The bond length Ln±O[0] varies in the

range 244±246 pm (Sr±O[0]: 250 pm) The position of (Ln(1)/
Sr(1)) is tenfold coordinated by ®ve O and ®ve N (Ln(1)±O:
244±307 pm; Sr(1)±O: 250±297 pm; Ln(1)±N: 251±314 pm;
Sr(1)±N: 261±301 pm). Sr(2) is coordinated by twelve N
atoms forming regularly truncated tetrahedra (Sr(2)±N: 338±
339 pm) (Fig. 5). The strongly enlarged thermal displacement
ellipsoids of Sr(2) indicates a disorder around this special
Wyckoff position (2a) (0 0 0), however no convincing disorder
model was yielded during the structure re®nement.

The Si and Al atoms of the sialons Sr3Ln10Si18Al12O18N36

(Ln~Ce, Pr, Nd) form a Frank Kasper like polyhedron
(Fig. 6) with 30 tetrahedral centres. A direct connection of the
tetrahedral centres of the neighbouring Frank Kasper like

Table 7 Selected interatomic distances [pm] and angles [³] for
Sr3Ln10Si18Al12O18N36 (Ln~Ce, Pr, Nd) (e.s.d.s in parentheses)

Ce Pr Nd

Ln(1) ±O(2)[0] 245.8(1) 26 244.78(3) 26 244.14(6) 26
±N(1)[2] 256.2(9) 253.4(4) 250.9(7)
±O(1)[2] 258.4(9) 255.7(4) 254.0(7)
±N(2)[3] 265.1(9) 264.6(4) 263.6(6)
±N(1)[2] 297.3(5) 26 297.1(2) 26 296.7(4) 26
±O(1)[2] 306.0(3) 26 306.04(9) 26 306.6(2) 26
±N(3)[3] 313(1) 313.1(6) 313.6(8)

Sr(1) ±O(2)[0] 250(1) 26 250.3(3) 26 250.2(6) 26
±N(2)[3] 263(3) 263(1) 261(1)
±N(1)[2] 268(3) 270(1) 269(2)
±O(1)[2] 269(3) 271(1) 271(2)
±N(1)[2] 293(3) 26 290.5(9) 26 290(1) 26
±O(1)[2] 297(2) 26 293.3(8) 26 292(1) 26
±N(3)[3] 301(3) 295(1) 294(2)

Sr(2) ±N(3)[3] 339(1) 126 338.6(6) 126 338.3(8) 126

Si(1) ±O(1)[2] 168.2(8) 167.3(4) 166.1(6)
±N(1)[2] 172.5(7) 172.4(4) 172.9(6)
±N(2)[3] 176.5(4) 26 176.1(2) 26 176.1(3) 26

Si(2) ±N(1)[2] 170.2(8) 26 170.3(4) 26 170.2(6) 26
±N(3)[3] 174.5(8) 26 174.5(4) 26 173.9(6) 26

Al(1) ±O(1)[2] 170.8(8) 170.5(4) 171.1(6)
±N(2)[3] 178.4(8) 178.1(4) 177.8(6)
±N(3)[3] 179.5(4) 26 178.7(2) 26 179.0(3) 26

Si(1) ±O(1)[2]±Al(1) 162.2(5) 161.8(3) 161.8(4)

Si(1) ±N(1)[2]±Si(2) 112.2(5) 111.8(2) 111.6(4)

Si(1) ±N(2)[3]±Al(1) 119.0(2) 26 119.2(1) 26 119.0(2) 26
Si(1) ±N(2)[3]±Si(1) 118.0(4) 118.0(2) 118.1(3)

S~356.0 S~356.4 S~356.1

Si(2) ±N(3)[3]±Al(1) 121.4(2) 26 121.4(1) 26 121.4(2) 26
Al(1) ±N(3)[3]±Al(1) 115.1(5) 115.1(2) 115.0(3)

S~357.9 S~357.9 S~357.8

Table 8 Atomic coordinates, isotropic displacement parameters [pm2],
and re®ned site occupation factors (SOF) for Sr3Ln10Si18Al12O18N36

(Ln~Ce, Pr, Nd) determined by neutron powder diffraction. Ueq is
de®ned as exp(28p2Ueqsin2h/l)

x y z Ueq SOF

Pr(1) 0.3734(4) x 0.0531(6) 137(15) 0.44(2)
Sr(1) 0.3734(4) x 0.0531(6) 137(15) 0.06(2)
Sr(2) 0 0 0 1203(208) 0.042(4)
Si(1) 0.1492(5) x 0.3078(6) 41(14) 0.5
Si(2) 0.2986(8) 0 0 17(20) 0.25
Al(1) 0.2058(5) x 0.9526(7) 23(15) 0.5
O(1) 0.2126(3) x 0.3982(4) 31(10) 0.49(2)
N(1)* 0.01(2)
O(2) J � 0 289(27) 0.27(2)
N(2)* 20.02(2)
O(3)* 0.04(2)
N(3) 0.0715(2) x 0.3749(2) 52(6) 0.46(2)
O(4)* 0.03(2)
N(4) 0.2331(2) x 0.0840(3) 52(6) 0.47(2)
O(5)* 0.04(2)
N(5) 0.9217(3) 2xz1 0.7298(3) 133(6) 0.46(2)
a*Pr(1), Sr(1), O(n), and N(n), respectively, have been positioned on
the identical crystallographic site and the fractional occupancy fac-
tors have been dependently re®ned. The atoms indicated obtained a
SOF near zero.

Fig. 4 3
`[(Si

�4�
18Al

�4�
12O

�2�
12N

�2�
12N

�3�
24)] network of the sialons Sr3Ln10Si18-

Al12O18N36 (Ln~Ce, Pr, Nd) consisting of SiON3 (black), AlON3

(grey), and SiN4 tetrahedra (dark hatched).

Fig. 5 Crystal structure of the sialons Sr3Ln10Si18Al12O18N36 (Ln~Ce,
Pr, Nd) in polyhedral visualisation; SrN12 polyhedra (black),
O(Ln3.33Sr0.67) tetrahedra (dark hatched), 3

`[(Si
�4�
18Al

�4�
12O

�2�
12N

�2�
12N

�3�
24)]

network (grey).
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polyhedra yields the arrangement depicted in Fig. 7. The
centers of these polyhedra are formed by the Sr(2) atoms.

Further details of the crystal structure investigations
reported in this paper may be obtained from the Cambridge

Crystallographic Data Centre (CCDC), on quoting the
reference number CCDC 1145/214. See http://www.rsc.org/
suppdata/jm/a9/a908844j/ for crystallographic ®les in .cif
format.

5 Single-crystal hardness investigations of
Sr3Pr10Si18Al12O18N36

For the ®rst time we performed hardness investigations on
sialon single crystals. The usual method to determine the
hardness of small single crystals (edge lengths 0.3 mm) is the
Vickers method. Isolated single crystals of Sr3Pr10Si18-
Al12O18N36 were merged for adjustment into a cylindrically
formed polymer matrix (diameter: 2 cm). As test load 0.1 N
and a time interval of 30 s as suitable parameters were chosen.
The hardness investigations (nine independent measurements)
exhibit an averaged Vickers hardness for Sr3Pr10Si18-
Al12O18N36 single crystals of 22.0 GPa. The measured hardness
value of Sr3Pr10Si18Al12O18N36 is in the same range as the
highest known values for sintered polycrystalline a-sialons30±33

and a-Al2O3.34

Recently, we obtained the oxonitridosilicate oxide
Ce4[Si4O4N6]O, which contains a hyperbolically layered
structure of Q3 type SiON3 tetrahedra and tetrahedral
[Ce4O]10z ions. The differentiation of O and N was possible
by lattice energy calculations with the MAPLE concept and it
was con®rmed by powder neutron diffraction.35
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